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ABSTRACT

Vector Electrical Flow is a proposed multiway cut solution. The goal of this study was to perform ro-
bust testing of this algorithm. The algorithm was applied unstructured and a structured graph with ran-
dom weights and graphs from applications in dense stereo matching and image denoising. The study
found that the Vector Electric Flow solution was within 0.65 ± 0.54% of the known minimum-weight
multiway cut. Based on this testing, Vector Electrical Flow has very strong potential for applications
in computer vision. September 6, 2020

1. Introduction

A powerful approach to computer vision inference involves
minimization of the generalized Potts Energy:1

f (`) =
∑
i∈V0

fp(`i) +
∑
{i, j}∈E0

λ{i, j}[`i , ` j] (1)

where the function expresses the cost of the assignment of a set
of labels ` ∈ L to the nodes of a graph G0 = (V0, E0). fi and
λ{i, j} are positive functions. In the case of computer vision, the
function fi and λ{i, j} are related to the image intensities. The
bracket notation means the following: [·] is 1 if the condition is
true and 0 otherwise.

For the case of |L| = 2, the Potts energy can be minimized ex-
actly by the graph cut algorithm (12). In the case for |L| > 2, the
optimal solution can only be obtained for special cases such as
where the labels are ordered (14), where the graph is sequential
(8), or where the graph has a tree structure(9). An early ap-
proach based on linear programming was also developed with
theoretical worst-case bounds (15).

Approximation methods have also been developed based on
the graph cut; α-expansion (3) and α-β - swap (3), and based
on tree reweighted message passing (19) and sequential tree

∗∗Corresponding author:
e-mail: yimpjp@virtualscalpel.com (Peter J. Yim)

1Other forms for the Potts Energy are also in use in computer vision. See
(23) and (18).

reweighted message passing in particular (16). These methods
do also apply to Markov random field models of images that
have more general pair-wise energy functions.

More recent focus has been on improvements to the compu-
tation speed (24) (6) (25) (1) (10), (17).

Our contribution is to evaluate the accuracy of a novel
method for minimization of the Potts energy (22). The method
makes use of the equivalence between minimization of the
Potts energy and the finding the multiway cut. Importantly,
the method is based on the iterative solution of systems of
linear equations that makes it potentially amenable to a high-
performance computing implementation. The method extends
an earlier graph cut algorithm (20) (21).

2. Background

2.1. The Multiway Cut

Our work is based on the observation that minimization of
the Potts Energy is equivalent to finding the multiway cut when
the graph is modified as described below (4). The multiway cut
is applied to a graph G = (V, E,w) derived from G0. The nodes
of the graph obtained by adding nodes corresponding to the set
of labels L. These nodes are referred to as terminal nodes, T .
Edges are added to the original graph that connect each terminal
node to each of the original nodes: ET = {{t, i}|t ∈ T, i ∈ V0}.
The edge weights are defined in a straightforward manner from
Di and λ{i, j} as described in (4).
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Fig. 1: Application of Vector Electrical Flow to a three terminal planar graph (left). The graph is undirected and has positive edge weights. The voltage state
is shown after 1, 5 and 25 iterations starting at figure 2nd to the left. The voltages are three component vectors and are represented by the red, green and blue
components of the color at each node. The graph is subdivided into three parts each containing one terminal. The component of the voltage which is maximal at
any given node represents the labeling of the node.

1

Fig. 2: Graph types used in the evaluation were a sparse unstructured graph (left), a sequence graph with 50 nodes fully interconnected with 3 terminal nodes
(center) and an image graph fully interconnected with N terminal nodes (right). In the latter graph interconnections between the image graph nodes and the terminal
nodes are only shown for the nodes in the first row of the image graph.

A cut C is defined as a subset of the edges in the graph
whose removal from the graph produces a graph consisting of
|T | connected components and each connected component con-
tains one node from the set T A minimum-weight graph cut or
the multiway cut is a cut that has a minimum weight of all the
possible graph cuts:

Cmin = argmin
C∈Ψ

∑
{i, j}∈C

w{i,i} (2)

where Ψ is the set of all possible cuts.
The first approximate solution was proposed by Dahlhaus et

al (7).

2.2. Cederbaum’s Maximum Flow theorem

Cederbaums’s Maximum Flow theorem (5) states that the
maximum flow in a flow graph can be found by an analog elec-
trical network. The network is defined in the following manner:

• The network is topologically equivalent to the flow graph.

• An external voltage is applied between the terminals that
are the s and t nodes in the flow graph.

• A two terminal device connects each node of the network.
The current-voltage relationship in the device is monoton-
ically increasing and the current is limited to the weight
of the corresponding edge in the flow graph. In the case
where the flow graph is undirected, the current is given by
the function:

The solution is approximate and the maximum flow solu-
tion approaches the exact solution as the external voltage ap-
proaches infinity. The Simcut algorithm (20) computes the
graph cut using this type of network. In the Simcut, the device
current-voltage relation is:

yi j =
w{i, j}

1 + |xi − x j|
(xi − x j) (3)

2.3. Vector Electrical Flow
An electrical network will be constructed based on the graph.

The electrical network is a network of resistors with each resis-
tor representing one of the edges in the graph with the same
connectivity as the corresponding edges in the graph. The elec-
trical behavior of the resistors is non-linear and is given by the
relation:
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Fig. 3: ”Application of vector electrical flow to dense matching. The first column is the original image. THe 2nd through 4th columns are the disparity maps
produced by the Multilabel Random Walker algorihm, Vector Electrical Flow and Sequential Tree Reweighted Message Passing, respectively. The datasets were,
from the 1st to 3rd row, Aloe, Dolls and Tsukuba, respectively.”

yi j =
w{i, j}

1 + ‖xi − x j‖∞
(xi − x j) (4)

where y and x are vectors with |L| components. The vector y is
analogous to electrical current and the vector x is analogous to
electrical voltage.

The model for the multi-label graph cut is an extension of the
binary-valued graph cut model proposed earlier (5).

2.4. The Fixed-Point solution

A matrix is constructed from the graph and is subdivided as
follows.

AG(X) =

[
A11 A12
A21 A22

]
(5)

The dimension of the blocks A11, A12, A21 and A22 are NT ×

NT , NT × N0, N0 × NT and N0 × N0 respectively. NV = |V |,
N0 = |V0| and NT = |T |.

The following notation will be used in referring to graph
nodes. An ordering of the graph nodes is defined: V =

{v1, v2....vNV }. Also, the first nodes are the terminal nodes:
{vi | i ≤ NT } = T . Based on this ordering, the elements of
AG are:

ai j =
ω{i, j}

1 + ‖xi − x j‖∞
(6)

xi is the ith row of the matrix X, ω is the edge weight map with
respect to the ordered indexing of the graph nodes.

The systems of equations can be written in matrix form:

A(X)X = B (7)

A(X) is a NV × NV matrix and B is a NV × NT matrix.
A system of non-linear equations is derived from the matrix

AG as follows:

A(X) = INV NV

[
INT NT 0NT N0

A21 A22

]
1NV−[

0NT NT 0NT N0

A21 A22

] (8)

The constant matrix B is:

B = vin ×

[
INT NT

0N0NT

]
(9)

The matrix B represents an external vector-valued voltage.
The first NT rows of this system of equations have the effect
of imposing orthogonal vector-valued voltages at each of the
terminal nodes, respectively. The remaining N0 rows of this
system of equations have the effect of imposing flow conser-
vation at each non-terminal node of the electrical network for
each component of the electrical flow. A value of 1.0× 106 was
used for vin. For the cases of NT = 2, vin >> 1 has the effect of
limiting he current through an edge to the weight of the edge.
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Fig. 4: ”Application of Vector Electrical Flow to image denoising. The first column is the original image. THe 2nd through 4th columns are the disparity maps
produced by the Multilabel Random Walker algorihm, Vector Electrical Flow and Sequential Tree Reweighted Message Passing, respectively. The datasets were,
from the 1st to 3rd row, 1010 brain mr, 3Dircadb1.1 and Cardix, respectively.”

The system of equations is solved using the fixed point
method:

A(X̃k)X̃k+1 = B (10)

where X̃ is an approximate solution and k is the iteration. The
fixed point solution is initialized with the zero matrix X̃0 = 0

Partition of the graph is represented by a vector ` :

`k
i = argmax(̃xk

i )} (11)

where x̃k
p is the voltage vector at the ith node after the kth itera-

tion and. Note that a single iteration of Vector Electrical Flow is
equivalent to the Multi-label Random Walker (13). A stopping
criteria of 25 iterations was used in all testing, beyond which
negligible change occurred.

3. Benchmarks

3.1. Images
• Aloe. Image data was obtained from the Middlebury

Stereo Dataset. These images represent a stereo image
pair after epipoloar rectification. The URLs of the left and
right image are at the following URL (images view0.png
and view1.png respectively).:
https:vision.middlebury.edu/stereo/
data/scenes2006/FullSize/Aloe/Illum1/
Exp1/

• Dolls. The data is from the same source as Aloe. The
URLs of the left and right image are at the following URL
(images view0.png and view1.png respectively).:
https://vision.middlebury.edu/stereo/
data/scenes2005/FullSize/Dolls/Illum1/
Exp1/

• Tsukuba. The data is from the same source as Aloe. The
URLs of the left and right image are at the following URL
(images scene1.row3.col1.ppm and scene1.row3.col2.ppm
respectively).:
https://vision.middlebury.edu/stereo/
data/scenes2001/data/tsukuba/

• 1010 braib mt 04. The image is from a magnetic reso-
nance image of the brain. The 17th 2D section of the 3D
image was used. The URL of the dataset is:
https://data.idoimaging.com/nifti/
1010_brain_mr_04.nii.gz

• 3D-IRCADb-01. The image is from computed tomogra-
phy of the abdomen. The is the 94th cross-section in the
image. The URL is:
https://www.ircad.fr/softwares/
3Dircadb/3Dircadb1/3Dircadb1.1.zip

• CARDIX. The image from computed tomography of the
heart. The 225th cross section of the 3D image was used.

https:vision.middlebury.edu/stereo/data/scenes2006/FullSize/Aloe/Illum1/Exp1/
https:vision.middlebury.edu/stereo/data/scenes2006/FullSize/Aloe/Illum1/Exp1/
https:vision.middlebury.edu/stereo/data/scenes2006/FullSize/Aloe/Illum1/Exp1/
https://vision.middlebury.edu/stereo/data/scenes2005/FullSize/Dolls/Illum1/Exp1/
https://vision.middlebury.edu/stereo/data/scenes2005/FullSize/Dolls/Illum1/Exp1/
https://vision.middlebury.edu/stereo/data/scenes2005/FullSize/Dolls/Illum1/Exp1/
https://vision.middlebury.edu/stereo/data/scenes2001/data/tsukuba/
https://vision.middlebury.edu/stereo/data/scenes2001/data/tsukuba/
https://data.idoimaging.com/nifti/1010_brain_mr_04.nii.gz
https://data.idoimaging.com/nifti/1010_brain_mr_04.nii.gz
https://www.ircad.fr/softwares/3Dircadb/3Dircadb1/3Dircadb1.1.zip
https://www.ircad.fr/softwares/3Dircadb/3Dircadb1/3Dircadb1.1.zip
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Table 1: Description of graphs using in the Vector Electrical Flow evaluation.

Dataset Graph
type

Nodes Edges Terminals /
Associations

Neighbor
edge
weights

Terminal
edge
weights

Random I Unstructured 19 32 3 /
None

Random
Range 0-1

Random
Range 0-K

Random II Signal 53 591 3 /
None

Random
Range 0-1

Random
Range 0-1

Aloe Stereo
matching

52,438 2,618,228 46 /
{-49, -48, ...
-15 pixels,
occlusion}

CG = 0.25
σ = 1000.0

CD = 0.4
σ = 8.0

Dolls Stereo
matching

57,322 2,862,362 46 /
{-49, -48, ...
-15 pixels,
occlusion}

CG = 0.125
σ = 1000.0

CD = 0.5
σ = 8.0

Tsukuba Stereo
matching

103,408 2,065,901 16 /
{-15, -14,
... -1 pixels,
occlusion}

CG = 0.15
σ = 1000.0

CD = 0.25
σ = 10.0

1010 brain
mr 04

Denoising 55,396 5,749,370 100 /
{0, 10, ... 1000
(unitless)}

CG = 0.15
σ = 1000.0

CD = NA
σ = 10.0

3Dircadb1.1 Denoising 184370 9,950,690 50 /
{0, 5, ... 245
Hounsfield
units}

CG = 1.0
σ = 10.0

CD = NA
σ = 10.0

Cardix Denoising 147,506 7,960,322 50 /
{0, 10, ... 490
Hounsfield
units}

CG = 0.25
σ = 50.0

CD = NA
σ = 25.0

The URL is:
http://www.gimias.org/index.php?
option=com_content&view=article&id=
26&Itemid=18

3.2. Preprocessing of images

The resolution of the left image from the Aloe and Dolls
datasets was reduced by a factor of five in both the horizon-
tal and vertical direction. Cropping was applied to the 3D-
IRCADb-01 image reducing it from a resolution of 512x512
to 480x384. Cropping was also applied to the Cardix image
reducing it from 512x512 to 384x384. The purpose of the re-
duction in the image resolution and in cropping of the images
was to reduce computing memory requirements and computa-
tion time. Image intensities in 1010 brain mr 04, 3D-IRCADb-
01 and Cardix were restricted to the ranges [0, 100], [0,245] and
[0, 490], respectively. Image intensities above the maximum or
below the minimum of the range were reset to the maximum
and minimum, respectively, or the range.

3.3. Image to graph mapping

The set of pixels in each image maps in a one-to-one manner
onto the nodes of the graph. Pairs of spatially adjacent pixels
also map in a one-to-one manner onto the set of edges in the
graph. A set of terminal nodes TCV all share edges with all of
the nodes corresponding to image pixels VCV

0 .

Each edge is assigned a non-negative weight. The edge
weights are generally associated with the distance or dissim-
ilarity between the nodes. The distance metric is specific to
the type of edge and the graph type. For the distance between
neighboring nodes in the graphs arising in noise removal the
metric is:

∆
denoising
0 ({p, q}) = | f (p) − f (q)| (12)

Where f () is the image intensity.
For the distance between grid nodes and terminal nodes in

graphs from noise removal, the metric is:

∆
denoising
T ({p, q}) = | f (p) − τ(q)| (13)

Where τ is the function that associates an image intensity with
each element of the set of terminal nodes and q ∈ TCV .

For the distance between neighboring grid nodes in graphs
arising from dense stereo matching, the metric is:

∆stereo
0 ({p, q}) = || f (p) − f (q)||2 (14)

Where f () is the RGB pixel-intensity tuple.
For the distance between grid nodes and the shift-associated

terminals in graph, t ∈ TCV {1} from dense stereo matching the

http://www.gimias.org/index.php?option=com_content&view=article&id=26&Itemid=18
http://www.gimias.org/index.php?option=com_content&view=article&id=26&Itemid=18
http://www.gimias.org/index.php?option=com_content&view=article&id=26&Itemid=18


6

Table 2: Summary of the evaluation of Vector Electrical Flow. Numbers in parentheses give the precision of final result in comparison to the exact solution, for the
Random I and Random II datasets and in comparison to the lower bound of the energy from Sequential Tree Reweighted Message Passing, for the remaining data
sets.

Dataset Exact Independent
pixel
model

Multilabel
Random
Walker

Sequential Tree
Re-weighted
Message Passing

Vector
Electrical
Flow

Random I 3.643 ± 0.606 14.697 ± 3.037
(300 %)

5.090 ± 0.816
(39 %)

3.643 ± 0.606
(exact)

3.653 ± 0.618
(0.27 %)

Random II 43.177 ± 3.058 78.886 ± 3.905
(82 %)

48.534 ± 3.602
(12 %)

43.177 ± 3.058
(exact)

43.255 ± 3.074
(0.18 %)

Aloe NA 538,156
(16 %)

482,528
(4.4 %)

461,932
(0.0025 %)

463,564
(0.35 %)

Dolls NA 789,495
(12 %)

726,874
(3.4 %)

702,566
(0.0001.5 %)

704,965
(0.34 %)

Tsukuba NA 868,830
(14 %)

786,451
(3.4 %)

760,015
(0.000053 %)

761,570
(0.20 %)

1010 brain mr 04 NA 273,304
(45 %)

223,242
(19 %)

187,540
(0.0037 %)

190,044
(1.3 %)

3Dircadb1.1 NA 556,950
(38 %)

460,540
(14 %)

403,711
(0.047 %)

408,029
(1.1 %)

Cardix NA 503,813
(30 %)

401,775
(4.1 %)

385,675
(0.0015 %)

391,317
(1.4 %)

Mean NA (67 ±97%) (12 ±12%) (0.0069
±0.016%)

(0.65 ±0.54%)

distance metric of Birchfield and Tamasi (2) is used but only
with interpolation of the right image:

∆stereo
0 ({p, q}) = min

δ
(|| f (p) − g(p, τstereo(q) + δ)||2), (15)

Where g is the RGB image intensity of the right image, τstereo is
a horizontal shift in pixels and δ ∈ {−0, 5, 0.0, 0.5} and q ∈ TCV .

The distance function is then related to the edge weight using
a Gaussian function:

wCV
{p,q} = cGe−(

∆{p,q}
σ )2

(16)

Where cG and σ are constants and ∆ represents the distance
between the nodes ∆

denoising
0 , ∆

denoising
T , ∆stereo

0 or ∆stereo
T . The

constants are selected based on trial and error. For the applica-
tions to dense stereo matching, one terminal, t = 1 is defined
to represent ”occlusion”. CG = 1 for all terminal edge weights.
All edges incident to that terminal have a weight of CD.

3.4. Labeling of Sequences

Vector Electrical Flow was evaluated for labeling of points
in a graph composed of a sequence of points and a set of la-
bels. The nodes of the graph are points from the sequence:
VS

0 = {s1, s2, s3, ....sN} and from a set of labels T S . Edges
are incident to all of the nodes VS

0 from all of the terminals:
ES

T = {{si, q} | (i, q) ∈ {1, 2, ...N}×T S } . Edges also are incident
to successive elements of the sequence: ES

0 = {{si, si+1} | i ∈
{1, 2, ...N − 1}}

The minimum weight graph cut was obtained via dynamic
programming (11). All edge weights were randomly generated.
Evaluation was done on the basis of 10 graphs.

3.5. Labeling of Unstructured Graphs

Vector Electrical Flow was evaluated for labeling of nodes
on unstructured graphs. Each graph contained 16 non-terminal
nodes VU

0 and 3 terminal nodes, T U .
20 edges were based on random pairing of the generic nodes,

EU
0 . Another 16 edges randomly paired each generic node to

one and only one label node or terminal, EU
T The weight of the

edges was:

wU
{p,q} =

R, if {i, j} ∈ EU
0

kR, if {i, j} ∈ EU
T

(17)

where R is a random variable and k is a factor that balances the
weights of the edges EU

0 and EU
T :∑

{p,q}∈EU
0

wU
{p,q} =

∑
{p,q}∈EU

T

wU
{p,q} (18)

Evaluation was based on the results from labeling of 10
graphs. The exact solution to the multilabel graph cut was de-
termined by exhaustive search.

4. Results

In total, Vector Electrical Flow was evaluated on eight
graphs; two generated with random weights, three with dense
stereo matching application and three with image denoising ap-
plication. Descriptions of the graphs are given in table 1.

Results for graphs with random weights are based on the
mean results over ten trials. Energy minimization with Vector
Electrical Flow was compared with those from an independent-
pixel model, with Multilabel Random Walker and the Sequen-
tial Tree-Reweighted Message Passing. The independent-pixel
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model refers to a model in which all pairwise potentials in the
Potts energy are zero. TRW-S was obtained for 250 iterations
for all graphs. For the random-weight graphs, exact solutions
were obtained by exhaustive search, for the unstructured graph,
and by dynamic programming for the graph based on a se-
quence. Energies are shown in table 2.

Energy minimization by Vector Electrical Flow was superior
by a large margin to energy minimization by the independent-
pixel model and by Multilabel Random Walker. Energy mini-
mization by Sequential Tree Reweighted Message Passing was
nearly exact and was superior to that of Vector Electrical Flow.
However, energy minimization by Vector Electrical Flow was
very close to optimal with the result differing by 0.65 ± 0.54%.
For the graphs from the computer vision applications, the label-
ing results are shown in figures 3 and 4.

Computations were not optimized for speed but for reference,
Vector Electrical Flow required 196 seconds for 25 iterations
while TRW-S required 0.6 seconds to obtain comparable preci-
sion. That precision was obtained after a single iteration. Tim-
ing was based on the Aloe dataset. Processing for both algo-
rithms was on an Amazon EC2 t2.xlarge instance with a 3.3
GHz CPU clock speed.

5. Conclusions

This study establishes that Vector Electrical Flow has excep-
tional potential for multiway cuts. The practical value of the
algorithm, however, is not yet established. One consideration
will be whether a fast implementation of the algorithm can be
obtained.

Computation of Vector Electric Flow was found to converge
in all cases. Intuitively, solution of the systems of equations
used in Vector Electric Flow require a conductive path from
each node to at least one terminal. That was found to be the
case for all testing. Limitation of the range of image intensities
in data sets from the image denoising application was necessary
to meet this condition. Further mathematical characterization of
this algorithm is desirable but is beyond the scope of this study.
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