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Method and system is disclosed for image segmentation. The
method includes acquiring a digital image, constructing a
graph from the digital image, calculating a plurality of cost
functions, constructing an electrical network based upon the
constructed graph and the plurality of calculated cost func-
tions, simulating the electrical network using fixed-point lin-
earization, and segmenting the image using the simulated
electrical network to produce segmented layers. Simulation
may be executed in parallel to achieve desirable computa-
tional efficiencies.
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1
METHOD AND SYSTEM FOR IMAGE
SEGMENTATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 61/594,248 filed on Feb. 2, 2012 which is
hereby incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to segmenting digital images, and
more particularly to image segmentation using parallel pro-
cessing.

BACKGROUND

The statements in this section merely provide background
information related to the present disclosure and may not
constitute prior art.

Image segmentation is a branch of digital image processing
that performs the task of categorizing, or classifying, the
elements of a digital image into one or more class types. The
class types can correspond to objects within an image. Clas-
sifying elements in a digital image has permitted a new under-
standing of biology, physiology, anatomy, as well as facili-
tated studies of complex disease processes and medical
diagnostic purposes in clinical care settings. Modern medi-
cine and clinical care are particularly poised to benefit from
greater imaging capabilities.

Initial volumetric images from may be provided from
known imaging devices such as X-ray computed tomography
(CT), magnetic resonance (MR), 3-D ultrasound, positron
emission tomography (PET) and many other imaging
devices. The imaging device typically provides a 3D image
data set from which to perform image segmentation in typical
medical imaging applications with the classification types
related to anatomical structure. For example, in thoracic
medical images, it is convenient to segment the image voxels
into classes such as bone, lung parenchyma, soft tissue, bron-
chial vessels, blood vessels, etc. There are many reasons to
perform such a task, such as surgical planning, treatment
progress, and patient diagnosis.

Various known analytical techniques are utilized to per-
form image segmentation. One known technique includes
analyzing 3-D medical images as sequences of 2-D image
slices that form the 3-D data. This is undesirable as contextual
slice-to-slice information is lacking when analyzing
sequences of adjacent 2-D images. Performing the segmen-
tation directly in the 3-D space tends to bring more consistent
segmentation results, yielding object surfaces instead of sets
of individual contours. 3-D image segmentation tech-
niques—for example, techniques known by the terms region
growing, level sets, fuzzy connectivity, snakes, balloons,
active shape and active appearance models—are known.
None of them, however, offers a segmentation solution that
achieves optimal results. The desire for optimal segmentation
of'an organ or a region of pathology, for example, is critical in
medical image segmentation.

Recently, graph-based approaches have been developed in
medical image segmentation. A common theme of these
graph-based approaches is the formation of a weighted graph
in which each vertex is associated with an image pixel and
each graph edge has a weight relative to the corresponding
pixels of that edge to belong to the same object. The resulting
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graph is partitioned into components in a way that optimizes
specified, preselected criteria of the segmentation.

For example, one known technique adaptively adjusts the
segmentation criterion based on the degree of variability in
the neighboring regions of the image. The method attains
certain global properties, while making local decisions using
the minimum weight edge between two regions in order to
measure the difference between them. This approach may be
made more robust in order to deal with outliers by using a
quintile rather than the minimum edge weight. This solution,
however, is computationally complex, making the segmenta-
tion problem Non-deterministic Polynomial-time hard (NP-
hard).

Additionally, many 2-D medical image segmentation
methods are based on graph searching or use dynamic pro-
gramming to determine an optimal path through a 2-D graph.
Attempts extending these methods to 3-D and making 3-D
graph searching practical in medical imaging are known. An
approach using standard graph searching principles has been
applied to a transformed graph in which standard graph
searching for a path was used to define a surface. While the
method provided surface optimality, it was at the cost of
significant computational requirements.

A third class of graph-based segmentation methods is
known to utilize minimum graph cut techniques, in which a
cut criterion is designed to minimize the similarity between
pixels that are to be partitioned. The approach, however, was
biased towards finding small components. The bias was
addressed later by ratio regions, minimum ratio cycles, and
ratio cuts. However, all these techniques are applicable only
to 2-D settings. Considering the self-similarity of the regions
and captures non-local properties of the image, a novel nor-
malized cut criterion for image segmentation was developed.
Recently, it has been shown that Eigen vector-based approxi-
mation is related to the more standard spectral partitioning
methods on graphs. However, all such approaches are com-
putationally impractical for many applications.

Recently, energy minimization frameworks that utilize
minimum s-t cuts to obtain medical image segmentation.
Some embodiments consider non-convex smooth priors and
developed heuristic algorithms for minimizing the energy
functions. Cost functions may be utilized including those
employing the “Gibbs model” Interactive segmentation algo-
rithms for n-dimensional images based on minimum s-t cuts
was further developed. In some cases, a cost function used is
general enough to include both the region and boundary prop-
erties of the objects.

When applied to graphs, the minimum s-t cut produces a
partition of the graph at a mathematical optimal partition of
two parts. There are many algorithms that have been devel-
oped to perform the minimum s-t cut of a graph. To date, the
algorithms that have proven to have the greatest execution
speed for performing the minimum s-t cut involve the simu-
lation of flow through an analogous transportation or com-
munication network. In this analogy, the weights of the edges
of the graph are considered to be maximum allowable flows.
A relatively new approach to the computation of the mini-
mum s-t cut involves the use of numerical operations. Algo-
rithms that use numerical operations for obtaining the mini-
mum s-t cut or an approximation to the minimum s-t cut have
been developed based on the linear programming methods.

Like other graph-based approaches, the energy minimiza-
tion framework utilizing s-t cuts is fairly computationally
complex when utilized in medical applications. Therefore, a
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need exists to more efficiently execute image segmentation
using an energy-based framework utilizing s-t cuts.

SUMMARY

Method and system is disclosed for image segmentation.
The method includes acquiring a digital image, constructing
a graph from the digital image, calculating a plurality of cost
functions, constructing an electrical network based upon the
constructed graph and the plurality of calculated cost func-
tions, simulating the electrical network using fixed-point lin-
earization, and segmenting the image using the simulated
electrical network to produce segmented layers. Fixed-point
linearization may be executed in parallel to achieve desirable
computational efficiencies.

The minimum s-t cut can theoretically be modeled by
construction of an analog electrical network that naturally
assumes a binary-voltage state equivalent to the minimum s-t
cut. The fundamental unit of the analog electrical network is
a non-linear resistive device with a current-limiting charac-
teristic. An algorithm is presented here for computational
simulation of such an analog network as a basis for segmen-
tation of medical images. The solution to the governing sys-
tem of equations is obtained by the fixed-point method that
allows for linearization of the system of equations. In certain
embodiments the use of Ruge-Stuben algebraic multigrid for
solution of the linear system of equations may be utilized at
each iteration.

This summary is provided merely to introduce certain con-
cepts and not to identify key or essential features of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments will now be described, by way
of'example, with reference to the accompanying drawings, in
which:

FIG. 1 schematically shows a flowchart of a segmentation
algorithm, in accordance with an embodiment the present
disclosure;

FIGS. 2A-2E depicts a series of exemplary images illus-
trating an exemplary application of the simulated s-t cut
approach to a random-intensity image, in accordance with an
embodiment of the present disclosure;

FIG. 3 graphically shows a simulation s-t cut capacity
relative to maximum flow in comparison to the number of
iterations as applied to the exemplary random-intensity
image, in accordance with an embodiment of the present
disclosure;

FIGS. 4A-4E depicts a series of exemplary images illus-
trating an exemplary application of the simulated s-t cut
approach to a magnetic resonance image, in accordance with
an embodiment of the present disclosure;

FIG. 5 graphically shows results of the simulation s-t cut
capacity relative to maximum flow in comparison to the num-
ber of iterations as applied to the exemplary magnetic reso-
nance image, in accordance with an embodiment of the
present disclosure;

FIGS. 6A-6E depicts a series of exemplary images illus-
trating an exemplary application of the simulated s-t cut
approach to a computed tomogram image, in accordance with
an embodiment of the present disclosure;

FIG. 7 graphically shows results of the simulation s-t cut
capacity relative to maximum flow in comparison to the num-
ber of iterations as applied to the exemplary computed tomo-
gram image, in accordance with an embodiment of the
present disclosure; and
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FIG. 8 schematically shows an exemplary computing sys-
tem in accordance with an embodiment of the present disclo-
sure.

DETAILED DESCRIPTION

Various embodiments of the present invention will be
described in detail with reference to the drawings, where like
reference numerals represent like parts and assemblies
throughout the several views. Reference to various embodi-
ments does not limit the scope of the invention, which is
limited only by the scope of the claims attached hereto. Addi-
tionally, any examples set forth in this specification are not
intended to be limiting and merely set forth some of the many
possible embodiments for the claimed invention.

Referring now to the drawings, wherein the depictions are
for the purpose of illustrating certain exemplary embodi-
ments only and not for the purpose of limiting the same, FI1G.
1 schematically shows a flowchart of a segmentation algo-
rithm according to an exemplary embodiment. The algorithm
begins at step 105 by acquiring an n-dimensional digital
image from an imaging scanner. For the purposes of this
application, an image is any scalar or vector function on
n-dimensional coordinates. The image may be two-dimen-
sional, and/or three-dimensional. The digital image may be
provided by any one of a number of known imaging devices
including medical-based imaging device such as a magnetic
resonance image, a computed tomography image, an optical
coherence tomography image, or an ultrasound-originating
image. It is to be appreciated that imaging, for use in embodi-
ments of the present disclosure, can be achieved utilizing
traditional scanners or any other image acquisition technique
as would be appreciated by those having ordinary skill in the
art.

A graph is constructed at step 110 from the n-dimensional
image or, in one embodiment, a series of images. Each pixel
i.e., point, of said image is associated with a vertex of said
graph and said graph includes an edge connecting each pair of
vertices corresponding to adjacent points in said image. The
graph may be defined as G=(V, E) with V representing a set of
vertices of a graph, and E representing a set of edges of a
graph such that every pixel u or v has a corresponding vertex.

In one embodiment, limited segmentation may be per-
formed by a user-operator 115. The limited segmentation, or
initial segmentation, may be outputted to an electrical net-
work 120 and defined as sets of vertices S, and T, each having
member nodes s and t. In one embodiment, limited segmen-
tation may be optionally performed by assigning foreground
and background seeds, either interactively or automatically
by acquiring landmarks that belong to the foreground/back-
ground.

A weight W representing a sum of the weights of the edges
that define the partition obtained by a minimum s-t cut, may
be calculated and inputted into the electrical network 120. As
one skilled in the art will readily recognize, the minimum s-t
cut can be a utilized to identify two components of graph
partitioning. As used herein, an s-t cut is defined with respect
to two nodes, s and t, of a weighted, directed graph G=(V,E).
Thereby, a partition of the vertices of a graph that defines the
partition obtained by the minimum s-t cut may be represented
by:

CA8T)

given:

(1

seS,teT and SNT=¢,SUT=V
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the s-t cut may be defined as a set of edges, C, as:

{(,j)eCxlieS jeT} 3]

wherein C,-is a partition of the vertices of a graph that defines
the partition obtained by the minimum s-tcut, S and T are sets
of'vertices from the graph G that, respectively, have members
s and t, C is a subset of the edges in the graph G the defines
the partition obtained by the minimum s-t cut, and i and j are
vertices in the graph or nodes in the corresponding simulated
electrical network as described herein below.

Given that each edge of the graph has an associated non-
negative weight, w, the weight the s-t cut is the sum of the
weights W of the set of edges of the cut. The sum W may be
determined by:

W:Zw;j
CE

wherein w,; describes the weight of the edge (i,j).

As one skilled in the art will readily recognize, preferential
partitioning of the graph can thus be formulated by obtaining
the minimum-weight s-t cut. Algorithms for obtaining the
minimum s-t cut can be developed based on the flow-network
analogy in which the maximum allowable flow, or capacity,
between a pair of nodes is equated with edge weight. In this
analogy, if a flow pattern in the network is consistent with the
capacities of all edges in the network and if an s-t cut can be
formed from the set of edges in which the flow is equal to the
capacity, the s-t cut is minimal, according to the Ford-Fulk-
erson theorem.

One method for obtaining the minimum s-t cut is by itera-
tively applying a push-relabel operation in which flow, or
push, is constrained to occur only in a descending manner
with respect to the node labels. The labels are an estimate of
distance from a given node to the sink along edges with
non-zero residual capacity. The computation time for the
minimum s-t cut algorithms may vary depending on the
graph. Algorithms in this class have obtained worst-case
computational complexities of O(nm 10g,, ./, 104 »1) and
O(min{m"2, n**}m log(n*/m)log u,,, ) where the graph has
n nodes, m edges and a maximum edge weight or flow capac-
ity of'u,,, ...

An algorithm based on a linear-resistor electrical network
model can be developed that allows for approximation of the
minimum s-t cut with a (1+€) approximation ratio. The
approximate minimum s-t cut is obtained by modulation of
the resistances in the network to obtain flow solutions that
satisfy the maximum-flow constraints. The solution is
obtained based on a near linear-time algorithm for the
approximation to the solution of the system of linear equa-
tions associated with the linear-resistor network. The compu-
tational complexity of the algorithm is O(m+n*3e~*?) where
O(n)=0(n log® n) for an unspecified constant c.

A method for physically obtaining the minimum s-t cut for
an undirected graph can be been developed. The method is to
fabricate a non-linear resistive network where each resistive
element represents an edge of the graph. The non-linear resis-
tive network will naturally approach a binary-voltage state
corresponding to the minimum s-t cut ofthe graph as the input
voltage applied between the source and sink nodes
approaches infinity. To obtain this behavior, the resistive ele-
ments must have the following characteristics: the current
through the resistor is a non-decreasing function of the volt-
age across the resistor, and for a given voltage polarity, the
current through the resistor is equal to or asymptotically
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6

approaches the flow capacity in the direction of the voltage
polarity of the corresponding graph edge, as the voltage
across the resistor approaches infinity.

Subsequent to receiving the graph-based information
which may be represented as G=(V, E, W), an analog electri-
cal network may be generated at block 120 based upon the
graph-based information. In one embodiment, an analog elec-
trical network is formed by a set of non-linear resistors that
represent the edges in a given graph. To simulate the electrical
network, the current-voltage characteristic of the resistors
must sufficiently align with or satisfy the Frisch criteria
described herein above. The following function provides
valid current-voltage behavior:

w;j(x; —Xj)
Lix) = —— 77
A G P

wherein x=(X, . . ., X,3;) is a vector of voltages at the nodes
in the network, i and j are vertices in the graph or nodes in the
corresponding simulated electrical network, w,, represents
the weight of the edge at (i,j), and I,; is a function representing
the current between each pair of nodes in the simulated elec-
trical network.

The electrical network is thus described by a non-linear
system of equations where source and sink nodes are set to the
high and low input voltages respectively and voltages at the
remaining nodes are governed by Kirchhoft’s current law:

F(x)=b [6]
where F=(f}, . . ., f,;,) and:
X; ieds, 1} 71
=3 %" 1) ieV/isg

ey

Wherein the vector b=(b, . .
conditions:

., by, represents the input

i=s
i=r1
0 ieV/is, i

The system of non-linear equations [6] can be rewritten in

the following form:
Axp=b ]

wherein A is an |V|x|V| matrix of functions with the follow-
ing non-zero elements:

1 Ljels iz [10]
I
ik B e ain
aj(x) = Xi—Xj
Lix
Z# Ljgls =]
jen‘_x‘ X

wherein V| is a number of vertices in the graph or the number
of nodes in the simulated electrical network, and x as
described herein above, is a vector representing the voltages
at particular nodes, e.g., i or j, in the simulated electrical
network.
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A solution can then be obtained in an iterative manner. The
following fixed-point linearization approach preferably
requires the solution of a linear system of equations at each
iteration:

Ay =D [11]

wherein X, is a vector representing the approximate voltage at
all nodes in the simulated electrical network at the k? fixed-
point iteration.

In the solution to the equations governing the system of
non-linear resistors, voltage gaps between adjacent nodes
represent the degree to which the flow between the two nodes
has saturated or reached its limiting flow capacity. In the limit,
the voltage assumes a state in which it is homogeneous within
each of two regions connected to the source and sink, respec-
tively, and a voltage gap equal to the input voltage occurs
along the minimum s-t cut. An approach to determining the
minimum s-t cut from the simulation is to use a graph cut
based on thresholding of the voltage at step 130 as shown in
FIG. 1. Such a cut based on the simulation of the non-linear
resistive network is represented by: C, " /aton—(g simulation
Tksimulation), where:

simudation _ [ ;> simulation _ [ ;)
Sy ={il%, 20} and T}’ ={il% <0}

El

2]

wherein C,>"#/%%°" is a partition of the vertices of a graph that
is obtained by thresholding of the voltages in the simulated
electrical network, S, 54" jg a sub-set of the vertices of
the graph that is obtained by thresholding of the voltage in the
simulated electrical network that contains the vertex s, and
T, Stmidation g g sub-set of the vertices of the graph that is
obtained by thresholding of the voltage in the simulated elec-
trical network that contains the vertex t.

The minimum s-t cut has significant potential value for
image segmentation. In one approach, image segmentation
can be formulated as the detection of an optimal boundary
that lies between two user-defined regions or sets of pixels U,
and V. Given a segmentation of the images described by:

4=U.V) [13]
and where:
Uy U, Vo< ¥V and UNV=¢,UUV=P [14]

where P is the set of pixels in the image, a boundary B can be
defined as a set of all pairs of pixels as follows:

B={(uv)eUxVr(u)-r(v)I<d} [15]

wherein the functionr is the position of a given pixel, and d is
distance threshold between any given pair of pixels below
which the pixels are considered to be adjacent.

The cost of a given boundary can be defined in terms of the
pair of image intensities, g, of each pair of pixels along the
boundary:

CB)= ) clg). g(v) (L6]

(u,v)eB

In this formulation of image segmentation, the minimum-
cost boundary is equivalent to the minimum s-t cut in the
analogous graph. As such, the weight of the edges in the
analogous graph is the cost function associated with pairs of
pixels.

As one skilled in the art will readily recognize, various
image thresholding techniques and pixel conditioning pro-
cesses may be allied to the image. In one embodiment, one or
more filters may be applied to an image including filters based
upon pixel thresholding such as variance in pixel color inten-
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sity. In one embodiment, pixels are removed or conditioned
from the image when an associated pixel color intensity value
is greater than a predetermined threshold. For pixels associ-
ated with multiple colors, a pixel color intensity of any par-
ticular color that varies greater than the predetermined thresh-
old may be removed from the image. In one embodiment, an
analysis of pixel intensity changes occurring between or
among a sequence of images may be used. For example,
pixels associated with a pixel color intensity that changes
greater than a predetermined threshold from the sequential
images may be removed from the image. In one embodiment,
pixels associated with identified edges or transitions in visual
data may be removed or conditioned. For example, pixels
having color intensity values that correspond to edges using
one of several known edge detection filters, e.g., a Sobel filter,
may be removed or conditioned.

In one exemplary implementation, the simulation s-t cut
was successfully implemented in Python v. 2.5.4 using the
packages Numerical Python (Numpy), Scientific Python
(Scipy), and Algebraic Multigrid Solvers in Python (Pyamg).
Two methods were implemented for solving the linear sys-
tems of equations associated with the simulation s-t cut. Inthe
first method, the linear systems of equations were solved
using Gaussian elimination. In the second method, the linear
system of equations was solved in an approximate manner
using Algebraic Multigrid. Coarse-fine splitting was per-
formed by the Ruge-Stuben method based on a strength-of-
connection threshold of 0.9. Coarse-fine splitting terminated
at a coarse-grid size of 100 nodes. Matrix coarsening was
obtained using Galerkin projection. The solution was
obtained using a single V-cycle with Symmetric Gauss-Seidel
relaxation for both pre- and post-smoothing. Simulations
were performed for an input voltage magnitude of 10°. Pixel
adjacency was defined based on 8-pixel neighborhood.

FIGS. 2A-2E depicts a series of exemplary images consist-
ing of 100x100 pixel dimension and illustrating an exemplary
application of the simulated s-t cut approach as described
herein. FIG. 2A shows an initial random-intensity image
having randomly distributed pixel intensities in the range of O
to 100. Source and sink regions are designated as the right-
most and left-most columns in a random-intensity image.
Progression of voltage at fixed-point iterations including the
1* iteration is shown in FIG. 2B and iterations at which the
simulation s-t cut capacity is within 10% of the maximum
flow is shown in FIG. 2C, 1% of the maximum flow is shown
in FIG. 2D and equal to the maximum flow is shown in FIG.
2E.

The two regions used for initialization of the segmentation
were the right-most and left-most columns of pixels, respec-
tively. Segmentation was based on optimization of the bound-
ary with respect to the following cost function:

Crandom(thV)=g(t)+g(V) [17]

FIG. 3 graphically shows the simulation s-t cut capacity
relative to maximum flow in comparison to the number of
iterations as applied to the above exemplary random-intensity
image. Convergence of the simulation s-t cut capacity to the
minimum s-t cut capacity for the Gaussian elimination is
shown as the full-line and the Algebraic Multigrid implemen-
tations is shown as a dashed-line. For comparison, the maxi-
mum flow (equivalent to the capacity of the minimum s-t cut)
of'the graph was obtained using h_prf implementation of the
push-relabel algorithm. The simulated s-t cut converged iden-
tically to the minimum s-t cut in 178 iterations using the
algorithm based on Gaussian elimination and 218 iterations
using the algorithm based on Algebraic Multigrid. Time for
convergence of the simulation s-t cut to the minimum s-t cut
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was 12.94 seconds. In comparison, the minimum s-t cut was
obtained in 31 msec by the h_prf implementation of a push-
relabel algorithm.

FIGS. 4A-4E depicts a series of exemplary images for
illustrating the simulated s-t cut approach as described herein
applied to a magnetic resonance image. FIG. 4A illustrates an
exemplary initial magnetic resonance image having source
and sink regions designated as a square 100x100 region at the
center of the image and the outer border of pixels in the image.
The exemplary image was obtained from the Stroke Imaging
Repository. Image segmentation based on the simulation s-t
cut was applied to an axial section of a T2-weighted magnetic
resonance image of the brain. The dimensions of the exem-
plary image of FIG. 4A as used in the analysis was 255x255
pixels. The two regions used for initialization of the segmen-
tation were, respectively, a square with dimensions of 100x
100 located at the center of the image and the outer border of
pixels in the image.

The segmentation was based on the descending-order
ranking with respect to the absolute value of the difference in
the image intensity between the two pixels over the set of all
adjacent pairs of pixels in the image, Q. Given a function of
the intensity difference between pixels:

d(u,v)=Igw)-g(v)

wherein 0 is a function of the image intensities of a pair of
pixels,

The cost function c,,,, for pixels u and v may then be
expressed as:

(18]

Crurd 6, V)=I{ (' V)EQIB (1, v)=O(u", V) }|

wherein Q is a set of adjacent pairs of pixels in the image.

Progression of voltage at fixed-point iterations including
the 1°*iteration is shown in FIG. 4B and iterations at which the
simulation s-t cut capacity is within 10% of the maximum
flow is shown in FIG. 4C, 1% of the maximum flow is shown
in FIG. 4D and equal to the maximum flow is shown in FIG.
4E.

FIG. 5 graphically shows results of the simulation s-t cut
capacity relative to maximum flow in comparison to the num-
ber of iterations as applied to the above exemplary magnetic
resonance image application. Convergence of the simulation
s-t cut capacity to the minimum s-t cut capacity for the Gaus-
sian elimination is shown as the full-line and the Algebraic
Multigrid implementations is shown as a dashed-line. As
FIG. 5 shows, the simulation s-t cut converged to the mini-
mum s-tcut after 19 iterations using the Gaussian elimination
method and after 31 iterations using the Algebraic Multigrid
method. Time for convergence of the simulation s-t cut to the
minimum s-t cut was 6.11 seconds. In comparison, the mini-
mum s-t cut was obtained in 140 msec by the h_prf imple-
mentation of the push-relabel algorithm.

FIGS. 6A-6E depicts a series of exemplary images for
illustrating the simulated s-t cut approach as described herein
applied to a computed tomogram image. FIG. 6A illustrates
the exemplary initial computed tomogram image having
dimensions of 191x191 pixels and having source and sink
regions designated as a square 50x50 region at the center of
the image and the outer border of pixels in the image. The
exemplary image shown in FIG. 6 A was obtained from the
Medical College of South Carolina.

The simulation s-t cut was applied to the segmentation of
the heart in a computed tomographic angiogram. The cost
function used in the segmentation was intended to force the
segmentation boundary as close as possible to an intensity
threshold of =350 Hounsfield units, the units of image inten-
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sity in computed tomograms. For a function that describes the
proximity of the intensity of a pair of pixels to the threshold of
-350 HU:

€(u,v)=I(-350-g(u))+(-350-g(v))! [20]

wherein € is a function of the image intensities of a pair of
pixels.

A cost function c_, associated with a given pair of image
intensities that is ascending order rank based on the function
€ of the pair of image intensities may be expressed as:

colu)={ (@' v)eQlew,v)zew' V)

Progression of voltage at fixed-point iterations including
the 1% iteration is shown in FIG. 6B and iterations at which the
simulation s-t cut capacity is within 10% of the maximum
flow is shown in FIG. 6C, 1% of the maximum flow is shown
in FIG. 6D and equal to the maximum flow is shown in FIG.
6E.

FIG. 7 graphically shows results of the simulation s-t cut
capacity relative to maximum flow in comparison to the num-
ber of iterations as applied to the above exemplary computed
tomogram image. Convergence of the simulation s-t cut
capacity to the minimum s-t cut capacity for the Gaussian
elimination is shown as the full-line and the Algebraic Mul-
tigrid implementations is shown as a dashed-line. In one
implementation, a simulation s-t cut converged to the mini-
mum s-t cut in 31 iterations using Gaussian elimination ver-
sion and 38 iterations using the Algebraic Multigrid version.
Time for convergence of the simulation s-t cut to the mini-
mum s-t cut was 4.72 seconds. In comparison, the minimum
s-t cut was obtained in 219 msec by the h_prfimplementation
of the push-relabel algorithm.

As oneskilled in the art will readily recognize, the segmen-
tation map resulting from the image segmentation processing
may also be viewed in the form of sequential slices. Interac-
tive 3D editing and image manipulation tools may be utilized
to construct clipping planes to modify segmented voxel
image data by projecting vertices of a region of interest (ROI)
in one plane and transforming the data within the ROI to allow
all of a plurality of slices on the inside of the ROI to be along
one axis of a three axis coordinate system. Known methods
typically require representing the inside of the ROI as a plu-
rality of line segments or other geometric shapes such as
triangles.

FIG. 8 schematically shows an exemplary computing sys-
tem 100 that may help implement the methodologies of the
present disclosure. The system 100 includes a computing
device 5, a network 20, and an imaging scanner 10. As shown
in FIG. 1, the computing device 5 may be directly communi-
catively connected and communicatively connected via the
network 20. The imaging scanner 10 is may be wired or
wirelessly communicatively connected to the network 20.
Components of the communication system 100 are shown in
FIG. 1 as single elements. Such illustration is for ease of
description and it should be recognized that the system 100
may include multiple additional implementations of the com-
ponents, e.g., amobile device may be physically connected to
the network 20 during selected periods of operation.

The network 20 may be any suitable series of points or
nodes interconnected by communication paths. The network
20 may be interconnected with other networks and contain
sub networks network such as, for example, a publicly acces-
sible distributed network like the Internet or other telecom-
munications networks (e.g., intranets, virtual nets, overlay
networks and the like). The network 20 may facilitates the
exchange of data between the imaging scanner 10 and the

21]
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computing device 5 although in various embodiments the
imaging scanner 10 may be directly connected to the com-
puting device 5.

The server system 5 may be one or more of various embodi-
ments of a computer including high-speed microcomputers,
minicomputers, mainframes, and/or data storage devices. The
computing device 5 preferably executes database functions
including storing and maintaining a database and processes
requests from the imaging scanner 10 to extract data from, or
update, a database as described herein below. The server may
additionally provide processing functions for the imaging
scanner 10.

In addition, the imaging scanner 10 may include one or
more applications that the consumer may operate. Operation
may include downloading, installing, turning on, unlocking,
activating, or otherwise using the application. The application
may comprise at least one of an algorithm, software, com-
puter code, and/or the like, for example, mobile application
software. In the alternative, the application may be a website
accessible through the world wide web.

The computing device 5 includes a central processing unit
(CPU) 50, random access memory (RAM) 52, input/output
circuitry 54 for connecting peripheral devices such as a stor-
age medium 56 to a system bus 60, a display adapter 58 for
connecting the system bus 60 to a display device, a user
interface adapter 62 for connecting user input devices such as
a keyboard, a mouse, and/or a microphone, to the system bus
60, and a communication adapter 64 for connecting the com-
puting device 5 to the network 20. In one embodiment, the
communication adapter 64 is a wireless adapter configured
for extraterrestrial communication such as in a communica-
tions satellite. The storage medium 56 is configured to store,
access, and modify a database 66, and is preferably config-
ured to store, access, and modity structured or unstructured
databases for data including, for example, relational data,
tabular data, audio/video data, and graphical data.

The central processing unit 50 is preferably one or more
general-purpose microprocessor or central processing unit(s)
and has a set of control algorithms, comprising resident pro-
gram instructions and calibrations stored in the memory 52
and executed to provide the desired functions including par-
allel processing functions. As one skilled in the art will rec-
ognize, the central processing unit 50 may have any number
of'processing “cores” or electronic architecture configured to
execute processes in parallel. In one embodiment, an appli-
cation program interface (API) is preferably executed by the
operating system for computer applications to make requests
of the operating system or other computer applications. The
description of the central processing unit 50 is meant to be
illustrative, and not restrictive to the disclosure, and those
skilled in the art will appreciate that the disclosure may also
be implemented on platforms and operating systems other
than those mentioned.

The present disclosure is directed to a number of imaging
applications. Applications include segmentation of single
surfaces, e.g., volumetric CT images, intravascular ultra-
sound or magnetic resonance and its 4-D extension, or track-
ing of such surfaces over time during the breathing cycle or
over the cardiac cycle; segmentation of liver or kidney sur-
faces, tumor surfaces, as well as surfaces of bones, joints, or
associated cartilages; surfaces separating cerebro-spinal
fluid, gray matter and white matter in the brain, or surfaces of
deep anatomical structures in the brain. The simulated mini-
mum s-t cut may be utilized in non-image segmentation appli-
cations such as shape reconstruction from e.g., stereo views.

It is to be understood that while the present disclosure is
described with particularity with respect to medical imaging,
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the principles set forth in detail herein can be applied to other
imaging applications. For example, other areas of application
include geological, satellite imaging, entertainment, image-
guided therapy/surgery and other applications as would be
appreciated by those skilled in the art.
The disclosure has described certain preferred embodi-
ments and modifications thereto. Further modifications and
alterations may occur to others upon reading and understand-
ing the specification. Therefore, it is intended that the disclo-
sure not be limited to the particular embodiment(s) disclosed
as the best mode contemplated for carrying out this disclo-
sure, but that the disclosure will include all embodiments
falling within the scope of the appended claims.
The invention claimed is:
1. A method for image segmentation comprising the steps
of:
acquiring an N-dimensional digital image, said image
comprising a plurality of data items associated with an
N-dimensional domain of points;

constructing a graph from the N-dimensional digital
image, wherein each point of said image is associated
with a vertex of said graph and said graph includes an
edge connecting each pair of vertices corresponding to
adjacent points in said image;

calculating a plurality of cost functions, wherein each cal-

culated cost function of the plurality of cost functions is
related to each identified edge;

constructing an electrical network based upon the con-

structed graph and the plurality of calculated cost func-
tions, wherein one or more points in the graph are con-
nected to a source node and one or more points in the
graph are connected to a sink node;

simulating the electrical network using fixed-point linear-

ization; and

segmenting the n-dimensional digital image using the

simulated electrical network to produce segmented lay-
ers.

2. The method of claim 1, wherein the cost function is
associated with a similarity metric associated with an image
intensity at the pair of vertices joined by the identified edge.

3. The method of claim 1, wherein the cost function is
calculated using a rank sum statistic.

4. The method of claim 1, wherein the electrical network is
further simulated using a serial conjugate gradient process.

5. The method of claim 1, wherein the electrical network is
further simulated using a parallel conjugate gradient process.

6. The method of claim 1, wherein the electrical network is
further simulated using a serial algebraic process.

7. The method of claim 1, wherein the electrical network is
further simulated using a parallel algebraic process.

8. The method of claim 1, wherein the n-dimensional digi-
tal image comprises a medical image.

9. The method of claim 1, wherein the n-dimensional digi-
tal image comprises a magnetic resonance image, a computed
tomography image, an optical coherence tomography image,
or an ultrasound image.

10. The method of claim 1, wherein the fixed-point linear-
ization is computationally executed in parallel.

11. The method of claim 10, wherein the computationally
executed in parallel further comprises utilizing an algebraic
multigrid.

12. The method of claim 1, wherein simulating the electri-
cal network using fixed-point linearization further comprises
the following steps:

obtaining governing equations of the electrical network;

linearizing the governing equations into linearized equa-

tions;
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approximating a solution using the linearized equations;

and

testing the solution for convergence, wherein the solution

is iteratively provided as feedback to the linearizing step
when convergence is outside a predetermined threshold.

13. The method of claim 12, wherein approximating the
linearized equations is executed using a Ruge-Stuben alge-
braic multigrid having a strength-of-connection threshold of
0.9 and a single V-cycle.

14. The method of claim 12, wherein approximating the
linearized equations is executed using a parallel implemen-
tation of the algebraic multigrid.

15. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform the method steps for segmenting a
digitized image, comprising the steps of:

acquiring an N-dimensional digital image representative of

a medical image, said image comprising a plurality of
data items associated with an N-dimensional domain of
points;

constructing a graph from the N-dimensional digital

image, wherein each point of said image is associated
with a vertex of said graph and said graph includes an
edge connecting each pair of vertices corresponding to
adjacent points in said image;

calculating a plurality of cost functions, wherein each cal-

culated cost function of the plurality of cost functions is
related to each identified edge;

constructing an electrical network based upon the con-

structed graph and the plurality of cost functions,
wherein one or more points in the graph are connected to
a source node and one or more points in the graph are
connected to a sink node;

simulating the electrical network using fixed-point linear-

ization; and

segmenting the n-dimensional digital image using the

simulated electrical network to produce segmented lay-
ers.

16. The program storage device of claim 15, wherein simu-
lating the electrical network using fixed-point linearization
further comprises the following steps:

obtaining governing equations of the electrical network;

linearizing the governing equations into a linearized equa-

tion;

solving the linearized equation for a solution; and

testing the solution for convergence, wherein the solution

is iteratively provided as feedback to the linearizing step
when convergence is outside a predetermined threshold.

17. The program storage device of claim 16, wherein the
linearized equation is given by:

AX )1 =b

wherein X, represents a vector representing the approximate
voltage at all nodes in the simulated electrical network at the
k™ fixed-point iteration, wherein A( ) represents |VIx|V]
matrix of functions based upon a number of vertices in the
graph or the number of nodes in the simulated electrical
network and b represents a vector of input conditions:

i=s
i=t1

0 ieV/is

wherein V+ is a positive input voltage to the electrical net-
work, and V- is a negative input voltage to the simulated
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electrical network, s and t are vertices in the graph, and iis a
node in the simulated electrical network.

18. The program storage device of claim 16, further com-
prising: determining a minimum s-t cut using a graph cut
based on thresholding voltage within the electrical network.

19. The program storage device of claim 16, wherein the
cost function is based upon a weight of edges in an associated
graph associated with pairs of pixels.

20. The program storage device of claim 15, wherein the
medical image comprises at least one of a magnetic resonance
image, an optical coherence tomography image, a computed
tomography image, or an ultrasound image.

21. The program storage device of claim 15, wherein con-
structing an electrical network based upon the constructed
graph further comprises the following steps:

generating a set of nodes in the electrical network and

associating the nodes to a set of vertices in the con-
structed graph; and

generating a set of devices in the electrical network and

associating the devices with a set of edges in the con-
structed graph, wherein the devices comprise a set of
current-voltage characteristics, the current-voltage char-
acteristics based upon a set of edge weights.

22. The program storage device of claim 21, wherein the
devices are governed by the set of current-voltage character-
istics.

23. The program storage device of claim 21, further com-
prising:

defining an electrical current between pairs of nodes in the

simulated electrical network by:

wy (X — x;)
L) = 20 27
e

wherein i and j are vertices in the graph or nodes in the
simulated electrical network, w,; is a weight of the edge (i,j),
and X is a vector representing electrical voltages at a defined
node in the simulated electrical network.

24. The program storage device of claim 21, further com-
prising:

defining a node of the electrical network as a source node

having a positive voltage;

defining a node of the electrical network as a sink node

having a negative voltage; and

connecting the plurality of source nodes and connecting

the plurality of sink nodes in the electrical network.

25. The program storage device of claim 24, further com-
prising:

connecting nodes associated with a first user-defined

region to a positive input voltage and connecting nodes
associated with a second user-defined region to a nega-
tive input voltage.

26. The program storage device of claim 24, wherein the
positive voltage is modeled at greater than 1,000,000 volts
and wherein the negative voltage is modeled at less than
negative 1,000,000 volts.

27. The program storage device of claim 15, wherein the
medical image comprises a three-dimensional graph used in
the reconstruction of shape from stereo images.

28. A system for image segmentation comprising:

one or more computing devices;

an imaging unit, wherein the imaging unit comprises at

least a computer processor which, when executed, per-
forms a method, the method comprising:
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acquiring an N-dimensional digital image, said image
comprising a plurality of data items associated with an
N-dimensional domain of points;

constructing a graph from the N-dimensional digital
image, wherein each point of said image is associated 5
with a vertex of said graph and said graph includes an
edge connecting each pair of vertices corresponding to
adjacent points in said image;

calculating a plurality of cost functions, wherein each cal-
culated cost function of the plurality of cost functions is 10
related to each identified edge;

constructing an electrical network based upon the con-
structed graph and the plurality of calculated cost func-
tions, wherein one or more points in the graph are con-
nected to a source node and one or more points in the 15
graph are connected to a sink node;

simulating the electrical network using fixed-point linear-
ization; and

segmenting the n-dimensional digital image using the
simulated electrical network to produce segmented lay- 20
ers.
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